Search results for " Quantum phase transitions"
showing 6 items of 6 documents
On critical properties of the Berry curvature in the Kitaev honeycomb model
2019
We analyse the Kitaev honeycomb model, by means of the Berry curvature with respect to Hamiltonian parameters. We concentrate on the ground-state vortex-free sector, which allows us to exploit an appropriate Fermionisation technique. The parameter space includes a time-reversal breaking term which provides an analytical headway to study the curvature in phases in which it would otherwise vanish. The curvature is then analysed in the limit in which the time-reversal-symmetry-breaking perturbation vanishes. This provides remarkable information about the topological phase transitions of the model. The Berry curvature in itself exhibits no singularities at criticality, nevertheless it distingui…
Thermodynamic, dynamic and transport properties of quantum spin liquid in herbertsmithite from experimental and theoretical point of view
2019
In our review we focus on the quantum spin liquid, defining the thermodynamic, transport and relaxation properties of geometrically frustrated magnets (insulators) represented by herbertsmithite $\rm ZnCu_{3}(OH)_6Cl_2$.
Ultrafast critical ground state preparation via bang-bang protocols
2020
The fast and faithful preparation of the ground state of quantum systems is a challenging task but crucial for several applications in the realm of quantum-based technologies. Decoherence poses a limit to the maximum time-window allowed to an experiment to faithfully achieve such desired states. This is of particular significance in critical systems, where the vanishing energy gap challenges an adiabatic ground state preparation. We show that a bang-bang protocol, consisting of a time evolution under two different values of an externally tunable parameter, allows for a high-fidelity ground state preparation in evolution times no longer than those required by the application of standard opti…
New trends in nonequilibrium statistical mechanics: classical and quantum systems
2020
The main aim of this special issue is to report recent advances and new trends in nonequilibrium statistical mechanics of classical and quantum systems, from both theoretical and experimental points of view, within an interdisciplinary context. In particular, the nonlinear relaxation processes in the dynamics of out-of-equilibrium systems and the role of the metastability and environmental noise will be overviewed. Three main areas of nonequilibrium statistical mechanics will be covered: slow relaxation phenomena and dissipative dynamics; long-range interactions and classical systems; quantum systems. New trends such as quantum thermodynamics and novel types of quantum phase transitions occ…
Quantum Critical Scaling under Periodic Driving
2016
Universality is key to the theory of phase transition stating that the equilibrium properties of observables near a phase transition can be classified according to few critical exponents. These exponents rule an universal scaling behaviour that witnesses the irrelevance of the model's microscopic details at criticality. Here we discuss the persistence of such a scaling in a one-dimensional quantum Ising model under sinusoidal modulation in time of its transverse magnetic field. We show that scaling of various quantities (concurrence, entanglement entropy, magnetic and fidelity susceptibility) endures up to a stroboscopic time $\tau_{bd}$, proportional to the size of the system. This behavio…
Geometry of quantum phase transitions
2020
In this article we provide a review of geometrical methods employed in the analysis of quantum phase transitions and non-equilibrium dissipative phase transitions. After a pedagogical introduction to geometric phases and geometric information in the characterisation of quantum phase transitions, we describe recent developments of geometrical approaches based on mixed-state generalisation of the Berry-phase, i.e. the Uhlmann geometric phase, for the investigation of non-equilibrium steady-state quantum phase transitions (NESS-QPTs ). Equilibrium phase transitions fall invariably into two markedly non-overlapping categories: classical phase transitions and quantum phase transitions, whereas i…