Search results for " Quantum phase transitions"

showing 6 items of 6 documents

On critical properties of the Berry curvature in the Kitaev honeycomb model

2019

We analyse the Kitaev honeycomb model, by means of the Berry curvature with respect to Hamiltonian parameters. We concentrate on the ground-state vortex-free sector, which allows us to exploit an appropriate Fermionisation technique. The parameter space includes a time-reversal breaking term which provides an analytical headway to study the curvature in phases in which it would otherwise vanish. The curvature is then analysed in the limit in which the time-reversal-symmetry-breaking perturbation vanishes. This provides remarkable information about the topological phase transitions of the model. The Berry curvature in itself exhibits no singularities at criticality, nevertheless it distingui…

Statistics and ProbabilityQuantum phase transitionPhysicsCondensed matter physicsHoneycomb (geometry)Statistical and Nonlinear PhysicsBerry connection and curvatureStatistics Probability and UncertaintyTopological phases of Matter geometric phase phase transition anyons and fractional statistical models quantum phase transitionsJournal of Statistical Mechanics: Theory and Experiment
researchProduct

Thermodynamic, dynamic and transport properties of quantum spin liquid in herbertsmithite from experimental and theoretical point of view

2019

In our review we focus on the quantum spin liquid, defining the thermodynamic, transport and relaxation properties of geometrically frustrated magnets (insulators) represented by herbertsmithite $\rm ZnCu_{3}(OH)_6Cl_2$.

Quantum phase transitionGeometrical frustrationFOS: Physical sciences02 engineering and technologyengineering.material01 natural sciencesCondensed Matter - Strongly Correlated ElectronsQuantum state0103 physical sciences010306 general physicsQuantum computerPhysicsQuantum PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)quantum spin liquidsherbertsmithitetopological quantum phase transitions021001 nanoscience & nanotechnologyCondensed Matter Physicslcsh:QC1-999Electronic Optical and Magnetic Materialsflat bandsengineeringQuasiparticleState of matterHerbertsmithiteCondensed Matter::Strongly Correlated ElectronsQuantum spin liquidfermion condensation0210 nano-technologyQuantum Physics (quant-ph)lcsh:Physics
researchProduct

Ultrafast critical ground state preparation via bang-bang protocols

2020

The fast and faithful preparation of the ground state of quantum systems is a challenging task but crucial for several applications in the realm of quantum-based technologies. Decoherence poses a limit to the maximum time-window allowed to an experiment to faithfully achieve such desired states. This is of particular significance in critical systems, where the vanishing energy gap challenges an adiabatic ground state preparation. We show that a bang-bang protocol, consisting of a time evolution under two different values of an externally tunable parameter, allows for a high-fidelity ground state preparation in evolution times no longer than those required by the application of standard opti…

Quantum phase transitionQuantum decoherenceGeneral Physics and AstronomyFOS: Physical sciencesPhysics and Astronomy(all)Topology01 natural sciences010305 fluids & plasmasquantum optimal protocols/dk/atira/pure/subjectarea/asjc/31000103 physical sciencesQuantum information010306 general physicsAdiabatic processQuantumPhysicsquantum phase transitionsQuantum PhysicsTime evolutionOptimal controlquantum control quantum optimal protocols quantum phase transitionsQuantum Gases (cond-mat.quant-gas)Ground statequantum controlQuantum Physics (quant-ph)Condensed Matter - Quantum Gases
researchProduct

New trends in nonequilibrium statistical mechanics: classical and quantum systems

2020

The main aim of this special issue is to report recent advances and new trends in nonequilibrium statistical mechanics of classical and quantum systems, from both theoretical and experimental points of view, within an interdisciplinary context. In particular, the nonlinear relaxation processes in the dynamics of out-of-equilibrium systems and the role of the metastability and environmental noise will be overviewed. Three main areas of nonequilibrium statistical mechanics will be covered: slow relaxation phenomena and dissipative dynamics; long-range interactions and classical systems; quantum systems. New trends such as quantum thermodynamics and novel types of quantum phase transitions occ…

Statistics and ProbabilityPhysicsQuantum phase transitionNonequilibrium statistical mechanicsClassical mechanicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciStatistical and Nonlinear PhysicsMetastable states Quantum phase transitions Topological phases of matterStatistics Probability and UncertaintyQuantum
researchProduct

Quantum Critical Scaling under Periodic Driving

2016

Universality is key to the theory of phase transition stating that the equilibrium properties of observables near a phase transition can be classified according to few critical exponents. These exponents rule an universal scaling behaviour that witnesses the irrelevance of the model's microscopic details at criticality. Here we discuss the persistence of such a scaling in a one-dimensional quantum Ising model under sinusoidal modulation in time of its transverse magnetic field. We show that scaling of various quantities (concurrence, entanglement entropy, magnetic and fidelity susceptibility) endures up to a stroboscopic time $\tau_{bd}$, proportional to the size of the system. This behavio…

Phase transitionScienceFOS: Physical sciencesmagnetic fieldQuantum entanglement01 natural sciencesArticle010305 fluids & plasmas0103 physical sciencesEntropy (information theory)humanStatistical physics010306 general physicsScalingQuantumCondensed Matter - Statistical MechanicsPhysicsQuantum PhysicsmodelMultidisciplinaryStatistical Mechanics (cond-mat.stat-mech)behaviorQRMultidisciplinary critical processes quantum phase transitionsObservablemodulationMedicineIsing modelQuantum Physics (quant-ph)entropyCritical exponentScientific Reports
researchProduct

Geometry of quantum phase transitions

2020

In this article we provide a review of geometrical methods employed in the analysis of quantum phase transitions and non-equilibrium dissipative phase transitions. After a pedagogical introduction to geometric phases and geometric information in the characterisation of quantum phase transitions, we describe recent developments of geometrical approaches based on mixed-state generalisation of the Berry-phase, i.e. the Uhlmann geometric phase, for the investigation of non-equilibrium steady-state quantum phase transitions (NESS-QPTs ). Equilibrium phase transitions fall invariably into two markedly non-overlapping categories: classical phase transitions and quantum phase transitions, whereas i…

Quantum phase transitionPhysicsPhase transitionQuantum PhysicsDissipative phase transitions Geometric phase Quantum geometric information Quantum metrology Quantum phase transitionsStatistical Mechanics (cond-mat.stat-mech)010308 nuclear & particles physicsCritical phenomenaGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesTheoretical physicssymbols.namesakeGeometric phase0103 physical sciencesQuantum metrologyDissipative systemsymbols010306 general physicsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)QuantumCondensed Matter - Statistical Mechanics
researchProduct